Statistical Mechanics: Course Summary

Rex Godby, Department of Physics, University of York

Introduction

This guide accompanies my Year 3 course "Statistical Mechanics". It is a summary of the main results which is intended to

- emphasise which results are more fundamental ${ }^{1}$ or are applications of especially wide significance;
- reiterate the structure of the course;
- provide a convenient reference to earlier results when learning the later parts of the course or doing problems.

It is not a comprehensive description of the course, and should not be taken to imply which material is examinable. Equally, it is not a list of results that have to be memorised: many of the results here may (with practice) be derived quite easily from a small number of the most fundamental principles.
It is not intended to be a self-contained document. For example, the definitions of some symbols and quantities are not given (but are, of course, to be found in your lecture notes or a textbook).
When using this guide you may find it helpful to have the companion guide "Key Maths and Physics for Statistical Mechanics" also at hand, which sets out the most important maths and physics knowledge from your prior study that are used in this course.
I'd welcome any suggestions for additions or other changes.

1 Microstates

A microstate is a quantum-mechanical state of the entire system being considered; in statistical mechanics we are often interested in systems that comprise many components (e.g. many particles). Each microstate has a well-defined energy, known from quantum mechanics.

1.1 Principle of equal equilibrium probability (PEEP)

An isolated system, whose energy is therefore constant, explores all the W microstates that have that energy, with equal probabilities $1 / W$.

[^0]
1.2 Density of microstates

The number of microstates (i.e.) whose energies lie between E and $E+d E$ is $g(E) d E$. For large systems $g(E)$ and W may, to a good approximation, be used interchangeably; in particular, $\ln g$ differs negligibly from $\ln W$.

2 Thermal Equilibrium, Temperature

2.1 Definition of Temperature

For a large system,

$$
\begin{equation*}
\frac{1}{k T}=\frac{d \ln g(E)}{d E} \tag{2.1}
\end{equation*}
$$

This quantity will be equalised when two large systems are able to exchange energy and reach equilibrium (i.e. thermal equilibrium).

2.2 Boltzmann distribution

Probability of a system (large or small) being in microstate i, where the system is able to exchange energy with a heat reservoir at temperature T, is

$$
\begin{equation*}
p_{i}=\frac{e^{-E_{i} / k T}}{Z} \tag{2.2}
\end{equation*}
$$

where E_{i} is the energy of microstate i, and Z is the partition function

$$
\begin{equation*}
Z=\sum_{j} e^{-E_{j} / k T} \tag{2.3}
\end{equation*}
$$

The partition function $Z(T)$ may be used to calculate many things conveniently. For example, the mean energy may be obtained from Z using the result

$$
\begin{equation*}
\bar{E}=\sum_{i} p_{i} E_{i}=-\frac{\partial Z}{\partial \beta} / Z=-\frac{\partial \ln Z}{\partial \beta}, \tag{2.4}
\end{equation*}
$$

where $\beta=1 / k T$.

3 Entropy

3.1 Entropy of an isolated system

The qualitative idea of entropy is to measure how many microstates a system is exploring with significant probability. For a isolated system, or a system sufficiently large that its energy fluctuates very little, Boltzmann defined

$$
\begin{equation*}
S=k \ln W, \tag{3.1}
\end{equation*}
$$

where W is the number of microstates that the system is exploring (with equal probability, from PEEP $)^{2}$.

[^1]
3.2 Entropy of a general system

The more general expression for entropy is the Gibbs formula

$$
\begin{equation*}
S=-k \sum_{i} p_{i} \ln p_{i}, \tag{3.2}
\end{equation*}
$$

where the system is exploring each microstate with probabilities p_{i} (not generally equal). For an isolated system in a steady state, $S=k \ln W$ is regained ${ }^{3}$.

3.3 Entropy and Helmholtz free energy of a system at constant T

$$
\begin{equation*}
F=\bar{E}-T S=-k T \ln Z . \tag{3.3}
\end{equation*}
$$

3.4 Meaning of heat, contact with thermodynamic entropy

Calculus shows that the change in the mean energy of a system is given by

$$
\begin{equation*}
d \bar{E}=d\left(\sum_{i} p_{i} E_{i}\right)=\underbrace{\sum_{i} E_{i} d p_{i}}_{d q_{\mathrm{rev}}}+\underbrace{\sum_{i} p_{i} d E_{i}}_{d w_{\mathrm{rev}}} . \tag{3.4}
\end{equation*}
$$

For a reversible (i.e. slow) change, these terms may be identified as, respectively, the heat that enters the system $d q_{\text {rev }}$ and the work done on the system $d w_{\text {rev }}$ as indicated below the terms above ${ }^{4}$. Then $d S=d q_{\mathrm{rev}} / T$, establishing contact with thermodynamic entropy.

4 Applications

4.1 Configurational entropy

Use $S=k \ln W$ directly, using permutation theory to evaluate W, the number of configurations, and then (for a system at constant volume and temperature) mimimise $F=\bar{E}-T S$. (The example studied was the concentration of vacancies in a crystal at temperature T.)

4.2 Mean energy of a simple harmonic oscillator

$$
\begin{equation*}
\bar{E}=\frac{1}{2} \hbar \omega+\frac{\hbar \omega}{e^{\hbar \omega / k T}-1}, \tag{4.1}
\end{equation*}
$$

the Planck oscillator formula, follows from applying the Boltzmann distribution. The heat capacity is then

$$
\begin{equation*}
C=d \bar{E} / d T=k \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}}, \tag{4.2}
\end{equation*}
$$

where $x=\hbar \omega / k T$. At high T (specifically, $k T \gg \hbar \omega$), these expressions become simply $k T$ and k respectively (an example of equipartition ${ }^{5}$).

[^2]
5 Vibrational Energy of a Solid

In a crystal of N vibrating atoms, dimensions $L \times L \times L$, each vibrational mode may be characterised by the 3 components of its wavevector $\mathbf{q}=\left(q_{x}, q_{y}, q_{z}\right)$, where each component ${ }^{6}$ is a positive integer times π / L. (This important method of counting states in q-space is also used in Sections 6, 8 and 9 of the course.) There are 3 vibrational modes for each \mathbf{q}.

5.1 Einstein model

In this rather crude model, each vibrational mode is taken to have the same angular frequency, ω_{E}, so the heat capacity is simply that of a single oscillator (Eq. 4.2) multiplied by 3 N , the number of modes. It is exponentially small at low T, a feature not observed in real solids.

5.2 Debye model

Here we take a more realistic dispersion relation, $\omega=c q$, where c is a constant (the speed of sound, in effect). The total heat capacity involves a sum over modes which may be evaluated by integrating over q (here, from 0 to $q_{\max }$, where $q_{\max }$ is chosen to encompass exactly 3 N modes), noting that the volume of the positive octant of a spherical shell is $4 \pi q^{2} d q / 8$, and making use of the number of \mathbf{q}-points per unit volume of \mathbf{q}-space $\left(V / \pi^{3}\right)$, the number of modes per \mathbf{q} (3), and the contribution of each mode:

$$
\begin{equation*}
C=\frac{3 k^{4} T^{3} V}{2 \pi^{2} \hbar^{3} c^{3}} \int_{0}^{\hbar c q_{\max } / k T} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x \tag{5.1}
\end{equation*}
$$

where $V=L^{3}$ and $q_{\max }=\left(6 \pi^{2} N / V\right)^{1 / 3}$. This goes to $3 N k$ at high T and falls to zero proportional to T^{3} at low T.

6 The Ideal Gas

6.1 Partition function of the ideal gas

$$
\begin{equation*}
Z=\frac{Z_{1}^{N}}{N!}=\frac{V^{N}}{N!}\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 N / 2} \tag{6.1}
\end{equation*}
$$

where Z_{1} is calculated using state counting in \mathbf{q}-space (see above). From Z, the free energy F is readily obtained using $F=-k T \ln Z$. (Here, as so often in this course, it's convenient to use Stirling's approximation $\ln N!\approx N \ln N-N$.)

6.2 Pressure and mean (translational) energy of the ideal gas

$$
\begin{equation*}
P V=N k T, \tag{6.2}
\end{equation*}
$$

the ideal gas law, establishes the equivalence of T to the ideal gas temperature. Also

$$
\begin{equation*}
\bar{E}=\frac{3}{2} N k T . \tag{6.3}
\end{equation*}
$$

[^3]
6.3 Maxwell-Boltzmann distribution of molecular speed, c

$$
\begin{equation*}
f(c)=\frac{1}{2 \pi^{2}}\left(\frac{2 \pi m}{k T}\right)^{3 / 2} c^{2} e^{-m c^{2} / 2 k T} \tag{6.4}
\end{equation*}
$$

6.4 Heat capacity of a diatomic molecular gas like O_{2}

To the translational heat capacity $\frac{3}{2} N k$ is added a further $N k$ from rotation ($k T \gg$ rotational energy spacing) and a much smaller contribution (at normal temperatures) from vibration ($k T<$ vibrational energy spacing).

7 Systems with Variable Numbers of Particles

7.1 Chemical potential

$$
\begin{equation*}
-\frac{\mu}{k T}=\left(\frac{\partial \ln g(E, N)}{\partial N}\right)_{E} . \tag{7.1}
\end{equation*}
$$

This quantity will be equalised (along with T) when two large systems are able to exchange energy and particles.
The useful TdS equation is extended to

$$
\begin{equation*}
d \bar{E}=T d S-P d V+\mu d N \tag{7.2}
\end{equation*}
$$

7.2 Gibbs distribution

Probability of a system (large or small) being in microstate i, where the system is able to exchange energy and particles with a heat-and-particle reservoir at temperature T and chemical potential μ, is

$$
\begin{equation*}
p_{i}=\frac{e^{-\left(E_{i}-\mu N_{i}\right) / k T}}{\mathcal{Z}}, \tag{7.3}
\end{equation*}
$$

where the grand partition function is

$$
\begin{equation*}
\mathcal{Z}=\sum_{j} e^{-\left(E_{j}-\mu N_{j}\right) / k T} \tag{7.4}
\end{equation*}
$$

The sum in \mathcal{Z} is over all microstates, taking account of all possible values of N_{j}, the number of particles (unlike the ordinary Z in which only microstates with a particular value of N are summed over).

8 Identical Particles

8.1 Bose-Einstein distribution

The average number of identical bosons (spin quantum number $s=0,1,2, \ldots$) in a single-particle state of energy ε is

$$
\begin{equation*}
f(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k T}-1} . \tag{8.1}
\end{equation*}
$$

At low temperatures, nearly all the particles condense into the single-particle state of lowest energy.

8.2 Fermi-Dirac distribution

For identical fermions ($s=\frac{1}{2}, \frac{3}{2}, \ldots$), the Pauli principle of quantum mechanics prohibits two or more fermions from occupying the same single-particle state (where we count the different spin orientations as distinct single-particle states). The average number of identical fermions in a single-particle state of energy ε is

$$
\begin{equation*}
f(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k T}+1} . \tag{8.2}
\end{equation*}
$$

At low temperatures, all single-particle states up to the Fermi energy ε_{F} (the chemical potential at $T=0$) contain 1 fermion (i.e. are fully occupied), and higher states contain zero fermions.

8.3 Determination of chemical potential

In both the above distributions, μ must be chosen (at each T) so that $f(\varepsilon)$, summed over all single-particle states, equals N, the number of particles known to be in the system.

9 Black-Body Radiation

9.1 Energy density

Energy per unit volume in electromagnetic modes of a vacuum, excluding the T-independent zero-point energy, is

$$
\begin{equation*}
\varepsilon=\frac{\bar{E}}{V}=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}} T^{4}=\int_{0}^{\infty} \varepsilon_{\omega}(\omega) d \omega, \tag{9.1}
\end{equation*}
$$

where the spectral energy density (i.e. resolved into contributions from each ω) is given by

$$
\begin{equation*}
\varepsilon_{\omega}(\omega)=\frac{\hbar \omega^{3}}{\pi^{2} c^{3}\left(e^{\hbar \omega / k T}-1\right)} . \tag{9.2}
\end{equation*}
$$

(As usual, ω is related to wavelength by $\omega=2 \pi c / \lambda$.)

9.2 Energy flux

The electromagnetic energy flux impinging on (and, for a black body, emitted by) a solid surface per unit area per unit time is σT^{4}, where

$$
\begin{equation*}
\sigma=\frac{\pi^{2} k^{4}}{60 \hbar^{3} c^{2}} \tag{9.3}
\end{equation*}
$$

is known as the Stefan-Boltzmann constant.

10 Classical Statistical Mechanics

This non-examinable section of the course is a brief introduction to how statistical mechanics was originally (and, of course, not fully correctly) formulated before the theory of quantum mechanics existed.

[^0]: ${ }^{1}$ Sections $1,2,3,7,8$ and 10 are mainly fundamental statistical mechanics, while Sections 4, 5, 6 and 9 contain mainly applications.

[^1]: ${ }^{2}$ Real systems have a unique ground state, so at very low temperatures W is effectively 1 , so $S=0$: this is the third law of thermodynamics.

[^2]: ${ }^{3}$ And as the isolated system's steady state is approached, S as given by the Gibbs formula increases to a maximum: this is the second law of thermodynamics.
 ${ }^{4}$ This is the first law of thermodynamics. Strictly, $d w_{\text {rev }}$ should be termed the work done by varying the macroscopic constraints - e.g. by changing the volume of a container of gas.
 ${ }^{5}$ The equipartition theorem is a general result, applicable when $k T \gg$ quantum energy spacing (i.e. in the classical limit), which states that each degree of freedom in the energy that is proportional to (displacement) ${ }^{2}$ or (velocity) ${ }^{2}$ acquires a mean value of $\frac{1}{2} k T$. In the oscillator there are two such terms: the kinetic energy and the potential energy, hence $k T$.

[^3]: ${ }^{6}$ See the guide "Key Maths and Physics for Statistical Mechanics" for details of the quantisation of waves in a box.

